资讯中心
您所在的当前位置:
首页
/
/
行业动态
01-17

《Additive Manufacturing》:分散剂浓度对提高还原光聚合3D打印陶瓷打印精度和表面质量的影响

本研究对PZT陶瓷悬浮液的配方进行了优化,实现了DLP打印,提高了印刷质量。特别研究了分散剂浓度对陶瓷悬浮液的流变行为、分散行为和固化行为的影响。首先,用FTIR光谱法评价了分散剂对颗粒表面的吸附程度。通过流变学分析和分散学分析的结果,验证了不同分散剂浓度所形成的颗粒表面界面结构的差异。两种分析结果与分散剂在颗粒表面的吸附程度的结果一致。含有最佳分散剂浓度的陶瓷悬浮液粘度最低,剪切稀释行为最强,沉降速率最慢,分散稳定性最高。通过对DLP打印陶瓷元件的光聚合动力学、表面粗糙度、固化深度和固化宽度等结果,研究了陶瓷悬浮液的固化性能。含有最佳分散剂浓度(2wt%)的陶瓷悬浮液具有最高的转化率和光聚合率。
01-16

《Journal of Materials Research and Technology》:挤出3d打印成型不同氧化钇含量稳定氧化锆基陶瓷的研制

从评估工作中得出的结论是,将PEG、DBP和拉脱石作为水介质添加剂的组合可以制备具有适当DIW打印性能的氧化锆基油墨。对于油墨的流变行为,氧化钇的添加量并没有显著影响,差异可能归因于原料粉末粒度分布的差异以及对油墨凝胶基基质的可能破坏。在1550℃-2h的烧结后,所有不同油墨制备的DIW原型均实现了约90%的密度。样品的机械性能与文献中报道的相似;然而,与传统压制方法得到的99%致密氧化锆组件相比,断裂韧性和硬度降低了约25%。这项研究展示了使用3Y-TZP、4Y-PSZ和5Y-PSZ制备具有合理固含量的陶瓷墨水的潜力,可以实现DIW技术的3D打印和制造3D陶瓷原型。然而,需要进一步改进油墨的开发和3D打印策略,以提高所得部件的密度和机械性能。
01-15

《Journal of the European Ceramic Society》:超快高温烧结增材陶瓷的超快速脱粘和烧结

本文的实验结果表明,将增材制造与超快高温烧结相结合可以实现打印、剥离和烧结无缺陷的复杂几何形状致密陶瓷部件。这种方法有望成为无压烧结、热压等传统技术的节能替代方案,为解决当前能源危机迈出了一小步。该方法灵活经济可行,适用于广泛的复杂几何形状和组成。一个非常值得注意的特点是,超快高温烧结允许在一个步骤中结合热脱脂和烧结,仅需几十秒的时间。虽然适当的化学脱脂步骤是必不可少的,以获得无裂纹的不扭曲陶瓷体,在超快高温烧结中,该步骤的持续时间也可以减少到几分钟。烧结样品呈黑色,可能是由于存在石墨碳(较短的超快高温烧结时间)或部分氧化物还原(特别是在最严重的超快高温烧结条件下)。通过控制超快高温烧结的电流和时间,可以定制最终密度和微观结构演变。优化的超快高温烧结条件可以实现完全致密和均匀的微观结构,具有亚微米级的晶粒,与传统长时间(约5000分钟)脱脂和烧结获得的组织相媲美。因此,超快高温烧结能够显著缩短熔融长丝制造陶瓷部件的热处理时间(脱脂/烧结),减少甚至超过99%。这一方法可以简化制程,实现节能效果。
01-13

《Additive Manufacturing》:材料挤出增材制造氧化锆零件采用粉末注射成型原料组合物

报道了研究商用CIM粘结剂在氧化锆零件的FFF打印中的应用。研究选择了四种不同的粘结剂组合物,并将它们与市售氧化锆粉末混合,制备出陶瓷原料。研究通过对混合、挤出和打印过程中获得的数据进行比较,评估了这些原料的性能。为了更好地比较,还将这些原料的流变性能和打印行为与商业氧化锆3D打印进行了对比。
01-12

《Journal of Materials Science & Technology》:通过粉末级配设计增强了立体光刻3D打印高孔隙率氧化铝陶瓷芯的综合性能

通过优化粉体级配设计和烧结工艺,制备出了具有最佳孔隙率和综合性能的SLA 3D打印氧化铝陶瓷芯材。粗粉含量对烧结驱动力和热力学终止起着重要作用,烧结温度则通过调节陶瓷芯的致密化速率和粉末生长过程来影响其综合性能。不同粒度的粉末呈现不同的烧结状态。此外,发现了层隙、粗粉与细粉之间的过渡隙以及细粉之间的桥接孔隙三个来源,并对它们的形成机理进行了分析。建立了SLA 3D打印陶瓷芯的“非骨架”微观结构模型。挠度试验表明,影响材料高温蠕变性能的主要因素是烧结孔隙率而不是晶粒尺寸。最佳的氧化铝陶瓷芯的开孔率为36.4%,高温挠度为2.27mm,弯曲强度为50.1MPa,为SLA 3D打印制备中等强度、低高温挠度的高孔隙率陶瓷芯提供了一条新途径。
01-11

《Ceramics International》:烧结工艺和孔隙率对3D打印氧化铝陶瓷芯性能的影响

研究中提出了两个方法来改进陶瓷件的性能。第一个方法是在光固化浆料中添加造孔剂,以控制和调整陶瓷芯的孔隙度。第二个方法是通过进行三重烧结工艺,进一步改善烧结过程,以调整零件的性能。
上一页
1
2
...
46

版权所有 2021 深圳中国九游会科技有限公司     网站建设:

上海管业有限公司 | 高压组合电器堵漏 | PP胶水 |